6 | 0 | 7 |
下载次数 | 被引频次 | 阅读次数 |
目的 构建人工智能辅助系统,实现小肠胶囊内镜(SBCE)图像中8类病变的自动检测与分割。方法 整合3个数据集的SBCE图像,使用LabeMe工具多边形标注病变,并转换为YOLO模型兼容的格式,用于神经网络模型的训练、验证与测试,包含13 983张图像和17 911个注释标签。模型性能评估指标包括精确率、灵敏度、50%交并比阈值下的平均精度(mAP50)、50%~95%交并比阈值下的平均精度均值(mAP50~95)、推理速度等指标。结果 共开发出5种不同规模的YOLO v11分割模型(v11n、v11s、v11m、v11l、v11x)。其中,YOLO v11m在保持最高mAP50(0.908)的同时,实现了较快的推理速度(208.3帧/s),因此被选为最佳模型。在外部测试集中,YOLO v11m对8类小肠病变的分割任务取得了0.892的总体mAP50,其中息肉和淋巴管扩张的分割精度最高,mAP50~95分别为0.723和0.707,而出血类别的mAP50~95最低,仅为0.409。结论 基于YOLO v11神经网络开发的SBCE图像分割模型YOLO v11m具有良好的识别性能,能够自动实现多类别小肠病变的精准定位、分类,并准确勾勒病变的像素级轮廓。
Abstract:Objective An artificial intelligence-assisted system was developed for the automatic detection and segmentation of eight types of small bowel lesions in small bowel capsule endoscopy(SBCE) images. Methods SBCE images were collected from three datasets, and lesion annotations performed using the LabeMe tool with polygonal segmentation, later converted into a You Only Look Once(YOLO)-compatible format for training, validation and testing of the neural network model. The dataset comprised 13,983 images with 17 911 annotated labels. Model performance was evaluated using precision, sensitivity, mean average precision at an intersection-over-union(IoU) threshold of 50%(mAP50), mean average precision across IoU thresholds from 50% to 95%(mAP50~95), and inference speed. Results Five YOLO v11 segmentation models of different scales(v11n, v11s, v11m, v11l, v11x) were developed. Among them, YOLO v11m achieved the highest mAP50(0.908) while maintaining a fast inference speed of 208.3 frames per second, making it the optimal model. On the external test set, YOLO v11m attained an overall mAP50 of 0.892 for segmenting the eight lesion types. The highest segmentation accuracy was observed for polyps and lymphangiectasia, with mAP50~95 values of 0.723 and 0.707 respectively, whereas the lowest performance was noted for the bleeding category, with an mAP50~95 of only 0.409. Conclusion The SBCE segmentation model YOLO v11m was developed based on the YOLO v11 neural network demonstrated strong lesion recognition capabilities, enabling precise multi-class lesion localization, classification and pixel-level contour delineation. These findings highlight its promising potential for clinical applications.
[1] SEY M. Artificial intelligence and the promise of expediting and standardizing the reviewing and reporting of capsule endoscopy videos[J]. JAMA network open,2022,5(7):e2222006.
[2] TZIORTZIOTIS I,LASKARATOS F,CODA S. Role of artificial intelligence in video capsule endoscopy[J]. Diagnostics(Basel,Switzerland),2021,11(7).
[3]王奇雯,蒋斌,潘骏,等.人工智能在胶囊内镜中的应用现状与前景[J].中国实用内科杂志,2022,42(1):29-33.
[4] DING Z,SHI H,ZHANG H,et al. Gastroenterologistlevel identification of small-bowel diseases and normal variants by capsule endoscopy using a deep-learning model[J]. Gastroenterology,2019,157(4):1044-1054.
[5]陈健,王甘红,张子豪,等.基于不同卷积神经网络构建小肠多病变自动检测的人工智能辅助系统[J].兰州大学学报(医学版),2024,225(9):23-29.
[6] CHU Y,HUANG F,GAO M,et al. Convolutional neural network-based segmentation network applied to image recognition of angiodysplasias lesion under capsule endoscopy[J]. World journal of gastroenterology,2023,29(5):879-889.
[7] HABE T T,HAATAJA K,TOIVANEN P. Review of deep learning performance in wireless capsule endoscopy images for GI disease classification[J]. F1000Research,2024,13:201.
[8]陈健,王甘红,夏开建,等.基于YOLO神经网络和迁移学习的结直肠息肉内镜图像分割[J].现代消化及介入诊疗,2024,29(5):599-604.
[9]王珍妮,须月萍,夏开建,等.基于YOLO神经网络构建压力性损伤自动检测和分期的人工智能模型[J].中国全科医学,2024,27(36):4582-4590.
[10] ZHANG D,BU Y,CHEN Q,et al. TW-YOLO:an innovative blood cell detection model based on multi-scale feature fusion[J]. Sensors(Basel,Switzerland),2024,24(19):6168.
[11]王乾梁,石宏理.基于改进YOLO V3的肺结节检测方法[J].中国医学物理学杂志,2021,38(9):1179-1184.
[12] YOKOTE A,UMENO J,KAWASAKI K,et al. Small bowel capsule endoscopy examination and open access database with artificial intelligence:the SEE-artificial intelligence project[J]. DEN open,2024,4(1).
[13]丁雨,孙斌,王甘红,等.基于YOLOv8网络构建小肠多病变自动检测人工智能辅助系统[J].中国医疗设备,2025,40(1):20-25.
[14] SAZAK H,KOTAN M. Automated blood cell detection and classification in microscopic images using YOLO v11 and optimized weights[J]. Diagnostics(Basel,Switzerland),2024,15(1):22.
[15] SAHAFI A,KOULAOZIDIS A,LALINIA M. Polypoid lesion segmentation using YOLO-V8 network in wireless video capsule endoscopy images[J]. Diagnostics,2024,14(5):474.
[16] SAHAFI A,KOULAOZIDIS A,LALINIA M. Polypoid lesion segmentation using YOLO-V8 network in wireless video capsule endoscopy images[J]. Diagnostics,2024,14(5):474.
基本信息:
DOI:10.13885/j.issn.2097-681X.2025.07.003
中图分类号:TP18;TP391.41;R574.5
引用信息:
[1]陈健,徐晓丹,张子豪等.基于YOLO v11网络的小肠胶囊内镜病变自动分割AI系统开发[J].兰州大学学报(医学版),2025,51(07):15-23.DOI:10.13885/j.issn.2097-681X.2025.07.003.
基金信息:
江苏省苏州市第二十三批科技发展计划项目(SLT2023006); 常熟市医药卫生科技计划项目(CSWS202316,CS202452); 苏州卫生信息与健康医疗大数据学会项目(SZMIA2402); 苏州市科技攻关计划项目(SYW2025034); 常熟市医学人工智能与大数据重点实验室能力提升项目(CYZ202301)