nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2023 12 v.49 1-6
肿瘤免疫治疗的研究进展
基金项目(Foundation): 中央高校优秀青年团队基金资助项目(lzujbky-2023-eyt04)
邮箱(Email): sunhui@lzu.edu.cn;
DOI: 10.13885/j.issn.1000-2812.2023.12.001
中文作者单位:

兰州大学第二医院萃英生物医学研究中心;

摘要(Abstract):

<正>全球每年约1 000万人死于恶性肿瘤,恶性肿瘤是造成死亡的主要原因之一[1]。肿瘤对人类健康产生严重影响,各国都在探索攻克肿瘤的新途径。目前常用的肿瘤治疗方法主要有手术、化疗、放疗、靶向治疗和中药治疗等,近年随着相关治疗手段不断发展,肿瘤患者生存期也随之延长,

关键词(KeyWords): 肿瘤;免疫疗法;肿瘤免疫微环境;肠道微生物
参考文献

[1] Chen Simiao, Cao Zhong, Prettner K, et al. Estimates and projections of the global economic cost of 29 cancers in204 countries and territories from 2020 to 2050[J]. Jama Oncology, 2023, 9(4):465-472.

[2] Sanmamed MF, Chen Lieping. A paradigm shift in cancer immunotherapy:From enhancement to normalization[J].Cell, 2018, 175(2):313-326.

[3] Ichim CV. Revisiting immunosurveillance and immunostimulation:Implications for cancer immunotherapy[J].Journal of Translational Medicine, 2005, 3(1):8.

[4] Coley WB. Contribution to the knowledge of sarcoma[J].Annals of Surgery, 1891, 14(3):199-220.

[5] Osipov A, Murphy A, Zheng Lei. From immune checkpoints to vaccines:The past, present and future of cancer immunotherapy[J]. Immunotherapy of Cancer, 2019, 143:63-144.

[6] Klapper JA, Downey SG, Smith FO, et al. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma:A retrospective analysis of response and survival in patients treated in the surgery branch at the national cancer institute between 1986 and 2006[J]. Cancer, 2008,113(2):293-301.

[7] Khan M, Maker AV, Jain S. The evolution of cancer immunotherapy[J]. Vaccines, 2021, 9(6):11.

[8] Seimetz D, Heller K, Richter J. Approval of first CAR-Ts:Have we solved all hurdles for atmps?[J]. Cell Medicine,2019, 11:2155179018822781.

[9] Stanley M. Tumour virus vaccines:Hepatitis B virus and human papillomavirus[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2017, 372(1732):9.

[10] Lopes AG, Vandermeulen G, PRéAT V. Cancer DNA vaccines:Current preclinical and clinical developments and future perspectives[J]. Journal of Experimental&Clinical Cancer Research, 2019, 38(1):146.

[11] Desilva P, Aiello M, Gu-trantien C, et al. Targeting ctla-4in cancer:Is it the ideal companion for PD-1 blockade immunotherapy combinations?[J]. International Journal of Cancer, 2020, 149(1):31-41.

[12] Yi Ming, Zheng Xiaoli, Niu Mengke, et al. Combination strategies with PD-1/PD-L1 blockade:Current advances and future directions[J]. Molecular Cancer, 2022, 21(1):28.

[13] Aggaewal V, Workman CJ, Vignalid AA. LAG-3 as the third checkpoint inhibitor[J]. Nature Immunology, 2023,24(9):1415-1422.

[14] Sauer N, Janicka N, Szlasa W, et al. TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors[J]. Cancer Immunology Immunotherapy, 2023,72(11):3405-3425.

[15] Jiang Zhongxing, Sun Hao, Yu Jifeng, et al. Targeting cd47 for cancer immunotherapy[J]. Journal of Hematology&Oncology, 2021, 14(1):180.

[16] Chauvin JM, Zarour HM. TIGIT in cancer immunotherapy[J]. Journal for Immunotherapy of Cancer, 2020,8(2):1-7.

[17] Yuan Long, Tatineni J, Mahoney KM, et al. Vista:A mediator of quiescence and a promising target in cancer immunotherapy[J]. Trends in Immunology, 2021, 42(3):209-227.

[18] Kast F, Klein C, Uma?a P, et al. Advances in identification and selection of personalized neoantigen/t-cell pairs for autologous adoptive T cell therapies[J]. Oncoimmunology, 2021, 10(1):1869389.

[19] Mitra A, Barua A, Huang Luping, et al. From bench to bedside:The history and progress of CAR T cell therapy[J]. Frontiers in Immunology, 2023, 14:1188049.

[20] Laumont CM, Nelson BH. B cells in the tumor microenvironment:Multi-faceted organizers, regulators, and effectors of anti-tumor immunity[J]. Cancer Cell, 2023, 41(3):466-489.

[21] Zhang Leisheng, Meng Yuan,Feng Xiaoming, et al. CARNK cells for cancer immunotherapy:From bench to bedside[J]. Biomarker Research, 2022, 10(1):12.

[22] Mishra AK, Malonia SK. Advancing cellular immunotherapy with macrophages[J]. Life Sciences, 2023, 328:121857.

[23] Wang Zidong, Cao YuJ. Adoptive cell therapy targeting neoantigens:A frontier for cancer research[J]. Frontiers in Immunology, 2020, 11:176.

[24] Liu Nian, Xiaongyu, Zhang Ziqiang, et al. Advances in cancer vaccine research[J]. Acs Biomaterials Science&Engineering, 2023, 9(11):5999-6023.

[25] Miao Lei, Zhang Yu, Huang Leaf. mRNA vaccine for cancer immunotherapy[J]. Molecular Cancer, 2021, 20(1):41.

[26] Fan Ting, Zhang Mingna, Yang Jingxian, et al. Therapeutic cancer vaccines:Advancements, challenges, and prospects[J]. Signal Transduction and Targeted Therapy,2023, 8(1):450.

[27] Shalhout SZ, Miller DM, Emerick KS, et al. Therapy with oncolytic viruses:Progress and challenges[J]. Nature Reviews Clinical Oncology, 2023, 20(3):160-177.

[28] Larocca CA, Lebouef NR, Silk AW, et al. An update on the role of talimogene laherparepvec(t-vec)in the treatment of melanoma:Best practices and future directions[J].American Journal of Clinical Dermatology, 2020, 21(6):821-832.

[29] Huang Zhijian, Guo Hongen, Lin lin, et al. Application of oncolytic virus in tumor therapy[J]. Journal of Medical Virology, 2023, 95(4):e28729.

[30] Qiu Yi, Su Mengxi, Liu Leyi, et al. Clinical application of cytokines in cancer immunotherapy[J]. Drug Design Development and Therapy, 2021, 15:2269-2287.

[31] Leonard WJ, Lin Jianxin. Strategies to therapeutically modulate cytokine action[J]. Nature Reviews Drug Discovery, 2023, 22(10):827-854.

[32] Fu Tong, Dai Leijie, Wu Songyang, et al. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response[J]. Journal of Hematology&Oncology, 2021, 14(1):98.

[33] Devisser KE, Joyce JA. The evolving tumor microenvironment:From cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3):374-403.

[34] Elhanani O, Ben-uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment[J]. Cancer Cell, 2023, 41(3):404-420.

[35] Bejarano L, Jordao MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment[J]. Cancer Discovery,2021, 11(4):933-959.

[36] Xu Huanji, Ye Di, Ren Meiling, et al. Ferroptosis in the tumor microenvironment:Perspectives for immunotherapy[J]. Trends in Molecular Medicine, 2021, 27(9):856-867.

[37] Fernandes MR, Aggarwal P, Costa RGE, et al. Targeting the gut microbiota for cancer therapy[J]. Nature Reviews Cancer, 2022, 22(12):703-722.

[38] Lu Yuting, Yuan Xiangliang, Wang Miao, et al. Gut microbiota influence immunotherapy responses:Mechanisms and therapeutic strategies[J]. Journal of Hematology&Oncology, 2022, 15(1):47.

[39] Zhao linyong, Mei Jiaxin, Yu Gang, et al. Role of the gut microbiota in anticancer therapy:From molecular mechanisms to clinical applications[J]. Signal Transduction and Targeted Therapy, 2023, 8(1):201.

[40] Lee KA, Thomas AM, Bolte LA, et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma[J]. Nature Medicine,2022, 28(3):535-544.

[41] Mirji G, Worth A, Bhat SA, et al. The microbiomederived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer[J]. Science Immunology, 2022, 7(75):eabn0704.

[42] Mao Jinzhu, Wang Dongxu, Long Junyu, et al. Gut microbiome is associated with the clinical response to antiPD-1 based immunotherapy in hepatobiliary cancers[J].Journal for Immunotherapy of Cancer, 2021, 9(12):1-15.

[43] Vernieri C, FucàG, Ligorio F, et al. Fasting-mimicking diet is safe and reshapes metabolism and antitumor immunity in patients with cancer[J]. Cancer Discovery,2022, 12(1):90-107.

[44] Spencer CN, Mcquade JL, Gopalakrishnan V, et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response[J]. Science,2021, 374(6575):1632-1647.

基本信息:

DOI:10.13885/j.issn.1000-2812.2023.12.001

中图分类号:R730.51

引用信息:

[1]孙辉,钮玉平.肿瘤免疫治疗的研究进展[J].兰州大学学报(医学版),2023,49(12):1-6.DOI:10.13885/j.issn.1000-2812.2023.12.001.

基金信息:

中央高校优秀青年团队基金资助项目(lzujbky-2023-eyt04)

检 索 高级检索